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We obtain exact coexistence curves for a two-dimensional lattice model of an asymmetric binary
mixture of large and small molecules (squares and triangles, respectively), in which there is an energy
cost € for edge contact between a square and a triangle. For phase separation to occur, the coupling

parameter e P¢

must be smaller than a critical value. As € varies, the model interpolates between the

two hard-square systems formed when € = 0 or € = co. Phase separation occurs only for sufficiently
large e. A high packing density is also necessary to drive the demixing process.

PACS number(s): 61.20.Gy, 82.60.Lf, 05.50.+q, 61.25.Hq

Phase separation in binary mixtures has been stud-
ied in a wide variety of contexts [1-8]. The two com-
ponents, A and B, say, become miscible when entropic
effects are sufficient to overcome any existing enthalpic
effects caused by attractive or repulsive forces between
the constituents [3,4]. In an interesting recent paper,
Frenkel and Louis [8] described an exact calculation that
showed phase separation to occur in a two-dimensional
lattice model even in the absence of any energy of inter-
action between the constituents other than the infinite
energy of repulsion defining the hard-square nature of
their model. In their model, square molecules A were
placed in a square lattice, and smaller diamond-shaped
molecules B could occupy sites overlapping two squares
unoccupied by molecules of type A. While the central
result of their work was that phase separation occurred
when only hard-core interactions were present, their anal-
ysis also led to exact solutions when an energy €44 was
associated with the presence of two A-type molecules on
nearest-neighboring squares.

In the present paper we discuss a variant of the model
of Frenkel and Louis in which an exact solution can be ob-
tained when repulsive interactions e4p between squares
and small molecules are included. This is of interest be-
cause it interpolates between the two hard-core models
corresponding to eap = 0 and €45 = oco. It is also useful
to note the relative effects of €44 and e4p on demix-
ing in a system in which the packing number, defined as
the fraction of the lattice area covered by molecules, is
less than unity. An exact calculation in which the effects
of €44 and e4p are separately observable illustrates the
importance of free volume in determining whether phase
separation occurs.

Our model is similar to that of Frenkel and Louis [8],
and consists of a mixture of large molecules A (black
squares) and small molecules B (shaded triangles) on a
two-dimensional square lattice as shown in Fig. 1. Each
black square is allowed to occupy any of the squares on
the lattice, the chemical potential is u for this species,
and there is no energy cost for contact between the black
squares (for simplicity we postpone consideration of the
effects of the coupling €44). Multiple occupancy by the
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black squares is forbidden. Each unoccupied square on
the lattice is then further divided into four triangles.
Each of these triangles can be occupied by at most one
small particle B (the shaded triangles) with a fugac-
ity zp, and there is no energy cost for contact between
shaded triangles. A repulsive coupling, ¢, between the
small and large molecules is introduced for each edge con-
tact between the black squares and the shaded triangles.
Energy costs for point contact between the squares and
the triangles are neglected. The difference between our
model and that of Ref. [8] lies in the size and shape of
molecules B (triangles rather than diamonds consisting
of pairs of bonded triangles) and the presence of the A-B
interaction.

In the absence of the B particles, the grand-canonical
partition function for the large particles is

i= 3 exp [mzm] , 0
{ni} i
where 3 is the inverse temperature, n; takes the value

zero (unoccupied) or one (occupied) and thus describes
the occupancy of the square at position ¢, and the sum is

[1]

FIG. 1. A phase-separation lattice model for a mixture
of large molecules A (black squares) and small molecules B
(shaded triangles). The energy cost for the edge contact be-
tween the small and large molecules is e.
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over all the possible occupation configurations. Given a
configuration of occupancy {n;} on a lattice of N squares,
the grand-canonical partition function for particles B is

M; Mp
Zp({rn}) =D Y CMicMrytiaePeh

ll=012=0
=(1+ zBe_ﬁ‘)M’(l + zg)MF |

(2)

3)

where

is the total number of triangles available for occupancy
by the B that have edge contact with the large particles,

and

Mp =2 2N—4Zn,~+2n,~nj (4)

i (4,9)

is the total number of triangles available for occupancy
by B that have no edge contact with the large particles.
Here CM = % is the combinatorial factor. Thus
the grand-canonical partition function for the mixture is

M1=4Zn,~ —2Zn,'nj

(4.4)
|

Emixture = (1 +28)*Y Z exp [2 In(1 + 2B) — 2In(1 + zBe_ﬂe)] Z n;n;
(4,9)

{n:}

X exXp { [Bu —8In(1+ 2p) + 4In(1 + zBe_ﬂe)] Zni}

= 2+l the above

By means of the transformation n; = 24
partition function is mapped into the partition func-
tion of the two-dimensional Ising model with coupling

K =pJ = %lnﬁﬂ:ﬁ; and external field h = H =

iln (1—:;15;, where z4 = exp(Bu) is the fugacity of the

large particles. The coexistence curves can be obtained

from the exact solution [9-11] of the two-dimensional
Ising model with no external field, as was done in Ref. [8].
Along the coexistence curves, the two fugacities thus
obey the relation z4 = (1 + zg)*. For squares of unit
area, we find the number density n, of large molecules,

defined as )", n;/N, to be

_map+1
T2
and the number density of small molecules to be

(6)

1)

n =z_BalnEmixture
B N 323
(1, 0
" \1+7n  6+n
U2p — ;——M2p ,

i 6
2\14+n 041 1+19

(7)

(5)

molar fraction of large molecules is

. )

1+(2+\/§)ﬁ+(2—\/§)m

Figure 2 shows that when the coupling € decreases (6
increases), the two-phase region in 7- X 4 shrinks, decreas-
ing the tendency to phase separation. When 6§ reaches
a value 8. = v/2 — 1 [see Eq. (8)], the two-phase region
vanishes and no phase separation occurs. Let us look at
the two limits (“hard” and “soft” limits) of the present

model, corresponding to two models of hard-core mix-

tures. While the first (hard) model, in which € — oo,

Xalk=k.=

where § = e™P¢, where 1 = 1/zp is the reciprocal of the
fugacity of the small particles, and where u;p and mgp
are the energy per site and spontaneous magnetization
per site of the zero-field two-dimensional Ising model, re-

spectively [9-11]. We have plotted the coexistence curves
in the n-X 4 plane for various values of @ in Fig. 2. Here
is the molar fraction of the large particles.

Xa =l

The line of critical points can be determined from the

exact result K, = %ln(l + \/ﬁ), which yields
1=(14+v2)0+v2y.

Since at a critical point m2p = 0 and uzp = —/2, the

(8)
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FIG. 2. This shows the coexistence curves (solid curves)
with various values of 6 (from top to bottom, § = 0, 0.2,
and 0.4, respectively) in the 7-X 4 phase plane. The dots and

the dashed line represent the critical points and the projec-
tion, in the 7-X4 phase plane, of the line of critical points,

respectively.
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can undergo a phase separation, the second (soft) one,

in which € = 0, cannot. This difference results from a

corresponding difference in the possible packing arrang-

ments. In the second model an edge contact between
large and small particles is permitted, while such a con-
tact in the first one does not occur because of the infinite
repulsive force between particles of different type. When
the contacts between unlike particles are forbidden, the
loss of avaible area has a strong effect on the entropy of
the system. It is this steric hindrance that plays the key
role in yielding a phase separation in the mixture. For
a mixture with fixed numbers of large and small parti-
cles, a configuration that shows phase separation needs
a smaller area (or has a larger packing number) than a
homogeneous phase, which needs a larger area (or has a
smaller packing number). Hence by increasing the pack-
ing number of the mixture (or decreasing the area of the
system) more configurations that show homogeneity will
be eliminated, decreasing their competition with phase-
separation-favored configurations. At a critical packing
number where the configurations that favor phase sepa-
ration become dominant, demixing will occur. The phase
separation behavior of a mixture of hard spheres displays
similar behavior, and it is no surprise that such a mix-
ture has no phase separation for a low packing number
[5] but shows a phase-separated character at higher pack-
ing numbers [6]. Increasing the coupling € has the effect
of increasing the amount of excluded area (from zero to
1/4 in this model), and thus to increase the tendency to
phase separation.

As mentioned above, for the steric hindrance to play a
role in phase separation the mixture has to have enough
particle contacts. This can be seen more clearly in Fig. 3,
in which we plot the coexistence curves in the 6-X 4 plane
for various values of 7. For n larger than a critical value
Ne = 1/4/2 [see Eq. (8)], where the mixture is in the lower
pressure region, the two-phase zone disappears, and there

0

Xa
FIG. 3. This illustrates the coexistence curves (solid
curves) for various values of 7 (from top to bottom, n = 0,
0.3, and 0.6, respectively) in the 8-X 4 phase plane. The dots
and the dashed line represent the critical points and the pro-

jection, in the 8-X 4 phase plane, of the line of critical points,
respectively.
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is no phase separation. Thus for phase separation to oc-
cur, the packing number of the mixture must be greater
than %. (Again, the packing number is £ = ) n,5a,
where the sum is over the subscript a which represents
large or small particles and S, is the area of the particle
a, and represents the fraction of the area of the lattice
covered by molecules.) This result to some extent re-
solves the disagreement between the works of Refs. [5]
and [6], as we see that these two studies were concerned
with different packing densities. Lebowitz and Rowlin-
son [5] used the Percus-Yevick approximation, which is
valid at low packing densities, and found mixing in all
proportions of small and large hard spheres, while Biben
and Hansen [6] used a theory appropriate to dense fluid
mixtures.

The model we have treated can also be used to shed
some light on the effects of polymerization on phase sep-
aration, as it can be thought of in terms of a mixture of
monomers (triangles) and oligomers (squares consisting
of four tightly bound triangles) with a degree of poly-
merization of 4. The asymmetrical shape of the phase
diagrams can be observed in Figs. 2 and 3. We can gen-
eralize the model to include the degree of polymeriza-
tion as a parameter. To this end, we first divide squares
that are not occupied by a large molecule into k2 smaller
squares, and then further divide each of those smaller
squares into four small triangles. Each of those trian-
gles can then be occupied by at most one small molecule.
The system thus constructed is a crude model for a mix-
ture of monomers and branched polymers with degree of
polymerization 4k2. In this case, one can verify that the
k-dependent M1 and MF are given by

k 4Zn,-—2
i (

and

n;n;

i,3)

2 | 2k2N — 2k(k + 1)2 ni+k Y min |,

i (4.3)

FIG. 4. This shows the coexistence curves for various val-
ues of k (from bottom to top, k = 1, 2, 4, respectively) and

with n = 0.4 in the 6-X 4 phase plane. The dots represent the
critical points.
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respectively. We have plotted coexistence curves in the
0-X 4 plane for a fixed value of n and various values of k
in Fig. 4. One can observe that increasing the degree of
polymerization increases the tendency to phase separa-
tion, as is predicted in a mixture of monomers and linear
polymers by the Flory-Huggins mean-field theory [7,12].
The equation that describes the projection of the critical
surface at fixed k onto the 7-0 plane is given by

1=[(¢§+1)%—1]n+(ﬁ+1)%0. (10)

The corresponding critical values (i.e., 8. and 7.) are still
larger than zero and smaller than unity, but increase and
eventually reach unity as k tends to infinity. An asymp-
totic analysis indicates that when k tends to infinity, the
mixture is always in the two-phase region as long as nei-
ther 6 nor 7 is equal to unity.

As in the case of the system studied by Frenkel and
Louis, it is possible in our model to introduce interac-
tions €44 between the large molecules and still obtain

exact solutions. The effective coupling parameter K that
appears in the equivalent Ising model is now

1+2p

K=p 1722
2 nl+z)5¢e'ﬁ6

- -}i ,Be AA - (11)
This is quite different from the combination 18(e—}€44)
that appears when there is no free volume. However, if we
take the limit of an incompressible system by increasing
the fugacity zp of the small particles to infinity, then the
simpler form for K is restored.

In conclusion, we have obtained exact coexistence
curves for a model describing an asymmetric mixture of
interacting particles. Consideration of the effects of in-
creasing the repulsive interaction energy € between A and
B particles from zero to infinity shows that both ¢ and
the packing density must be sufficiently large if demixing
is to occur.
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FIG. 1. A phase-separation lattice model for a mixture
of large molecules A (black squares) and small molecules B
(shaded triangles). The energy cost for the edge contact be-
tween the small and large molecules is e.



